首页 | 本学科首页   官方微博 | 高级检索  
     


Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams
Authors:Gudowska I  Kopec M  Sobolevsky N
Affiliation:Medical Radiation Physics, Karolinska Institutet and Stockholm University, Box 260, S-171 76 Stockholm, Sweden. irena.gudowska@ki.se
Abstract:Secondary neutrons produced in high-energy therapeutic ion beams require special attention since they contribute to the dose delivered to patient, both to tumour and to the healthy tissues. Moreover, monitoring of neutron production in the beam line elements and the patient is of importance for radiation protection aspects around ion therapy facility. Monte Carlo simulations of light ion transport in the tissue-like media (water, A-150, PMMA) and materials of interest for shielding devices (graphite, steel and Pb) were performed using the SHIELD-HIT and MCNPX codes. The capability of the codes to reproduce the experimental data on neutron spectra differential both in energy and angle is demonstrated for neutron yield from the thick targets. Both codes show satisfactory agreement with the experimental data. The absorbed dose due to neutrons produced in the water and A-150 phantoms is calculated for proton (200 MeV) and carbon (390 MeV/u) beams. Secondary neutron dose contribution is approximately 0.6% of the total dose delivered to the phantoms by proton beam and at the similar level for both materials. For carbon beam the neutron dose contribution is approximately 1.0 and 1.2% for the water and A-150 phantoms, respectively. The neutron ambient dose equivalent, H(10), was determined for neutrons leaving different shielding materials after irradiation with ions of various energies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号