首页 | 本学科首页   官方微博 | 高级检索  
     


Importance of intrinsic calf vasodilator capacity in determining distribution of skeletal muscle perfusion during supine bicycle exercise in patients with left ventricular dysfunction
Authors:T Hattori  T Sumimoto  M Kaida  F Yuasa  T Jikuhara  M Hikosaka  T Sugiura  T Iwasaka
Affiliation:Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, USA.
Abstract:Although there is interest in forming synthetic analogs of hard tissues at physiologic temperature, significant gaps in knowledge exist with respect to the mechanisms by which precursor solids convert to apatites and also with respect to the apatite compositions that may be formed. In this study calcium-deficient HAp [Ca9(HPO4)(PO4)5OH] was prepared by hydrolysis of tricalcium phosphate (TCP), alpha-Ca3(PO4)2. The kinetics of HAp formation were studied as a function of temperature by isothermal calorimetry. TCP hydrolyzed completely within about 12 h, and the hydrolysis reaction evolved 133 kJ/mol of HAp formed. Although the kinetics of hydrolysis exhibited a strong temperature dependence, the mechanistic path taken appeared independent of temperature. The fluoridation of hydroxyapatite compositions having Ca/P ratios higher than 1.59 previously has been investigated. However, little work has been done on the fluoridation of more calcium-deficient hydroxyapatite. Ca9(HPO4)(PO4)5OH was formed at temperatures between 37.4 degrees and 55 degrees C to vary its morphology. These preparations then were reacted in NaF solution and the kinetics of fluoride incorporation studied. Solution chemical analyses were used to determine the amounts of fluoride incorporated. The extent of hydroxyl replacement by fluoride ranged from 17 to 72% and correlated with the surface area of the parent HAp.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号