首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of calcium titanate/titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid
Affiliation:1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;3. Chongqing Academy of Science and Technology, Chongqing 401123, China;4. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;5. Department of Physics, COMSATS Institute of Information Technology, Lahore, Pakistan
Abstract:In this study, TiO2-based coatings containing Ca and P ions were prepared on titanium alloy surfaces by microarc oxidation (MAO). After soaking in aqueous NaOH solution and subsequent heat treatment at 700 and 800 °C, calcium titanate/titania bioceramic composite (CTBC) coatings were obtained. The results show that the outer layers (0–1.5 μm) of the CTBC coatings are mainly composed of Ca, Ti, O and Na constituents with a uniform distributions with increasing the depth near the surfaces. The surface phase compositions of the CTBC coating formed at 700 °C are anatase, rutile and CaTi21O38 phases, as well as a few CaTiO3, while those of the CTBC coating formed at 800 °C are anatase, rutile and CaTiO3. When incubated in a simulated body fluid (SBF), apatite was deposited on the CTBC coatings probably via formation of hydroxyl functionalized surface complexes on the CTBC coating surfaces by ionic exchanges between (Ca2+, Na+) ions of the CTBC coatings and H3O+ ions in the SBF. The CTBC coating formed at 800 °C seems to facilitate the deposition of Ca and P probably due to the good crystallographic match between perovskite CaTiO3 and HA on specific crystal planes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号