首页 | 本学科首页   官方微博 | 高级检索  
     

Preparation and H_2S Gas-Sensing Performances of Coral-Like SnO_2–CuO Nanocomposite
摘    要:Nanocomposites composed of SnO2 and CuO were prepared by hydrothermal method. The microstructures of obtained SnO2–CuO powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption test. The results show that the nanocomposites exhibited coral-like nanostructure, and the average crystalline size of SnO2 was 12 nm. The specific surface area of the four samples, SnO2–0.2CuO, SnO2–0.5CuO, SnO2–1.0CuO and SnO2–2.0CuO are 72.97, 58.77, 49.72 and 54.95 m2/g, respectively. The gassensing performance of the four samples to ethanol, formaldehyde and H2 S was studied. The sensor of SnO2–0.5CuO exhibited high response to hydrogen sulfide(4173 to 10 ppm H2S, where ppm represent 10-6), and low response to ethanol and formaldehyde. The good selectivity exhibited that the SnO2–0.5CuO nanocomposite can be a promising candidate for highly sensitive and selective gas-sensing material to H2S.

收稿时间:2015-05-06

Preparation and H2S Gas-Sensing Performances of Coral-Like SnO2-CuO Nanocomposite
Chun Gao,Zhi-Dong Lin,Na Li,Ping Fu,Xue-Hua Wang. Preparation and H2S Gas-Sensing Performances of Coral-Like SnO2-CuO Nanocomposite[J]. Acta Metallurgica Sinica(English Letters), 2015, 28(9): 1190. DOI: 10.1007/s40195-015-0312-y
Authors:Chun Gao  Zhi-Dong Lin  Na Li  Ping Fu  Xue-Hua Wang
Affiliation:School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
Abstract:Nanocomposites composed of SnO2 and CuO were prepared by hydrothermal method. The microstructures of obtained SnO2-CuO powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption test. The results show that the nanocomposites exhibited coral-like nanostructure, and the average crystalline size of SnO2 was 12 nm. The specific surface area of the four samples, SnO2-0.2CuO, SnO2-0.5CuO, SnO2-1.0CuO and SnO2-2.0CuO are 72.97, 58.77, 49.72 and 54.95 m2/g, respectively. The gas-sensing performance of the four samples to ethanol, formaldehyde and H2S was studied. The sensor of SnO2-0.5CuO exhibited high response to hydrogen sulfide (4173 to 10 ppm H2S, where ppm represent 10-6), and low response to ethanol and formaldehyde. The good selectivity exhibited that the SnO2-0.5CuO nanocomposite can be a promising candidate for highly sensitive and selective gas-sensing material to H2S.
Keywords:Nanocomposite  SnO2-CuO  Gas sensor  H2S  
本文献已被 CNKI 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号