首页 | 本学科首页   官方微博 | 高级检索  
     


A parallel multiphase flow code for the 3D simulation of explosive volcanic eruptions
Affiliation:1. Earthquake Research Institute, The University of Tokyo, Japan;2. Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy;3. Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy;4. Department of Geography, University of Cambridge, UK;5. U.S. Geological Survey Cascades Volcano Observatory, Vancouver, Wash. USA
Abstract:A new parallel code for the simulation of the transient, 3D dispersal of volcanic particles in the atmosphere is presented. The model equations, describing the multiphase flow dynamics of gas and solid pyroclasts ejected from the volcanic vent during explosive eruptions, are solved by a finite-volume discretization scheme and a pressure-based iterative non-linear solver suited to compressible multiphase flows. The solution of the multiphase equation set is computationally so demanding that the simulation of the transient 3D dynamics of eruptive columns would not be cost-effective on a single workstation. The new code has been parallelized by adopting an ad hoc domain partitioning scheme that enforces the load balancing in the presence of a large number of topographic blocking-cells. An optimized communication layer has been built over the Message-Passing Interface. It is shown that the present code has a remarkable efficiency on several high-performance platforms and makes it possible, for the first time, to simulate fully 3D eruptive scenarios on realistic volcano topography.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号