首页 | 本学科首页   官方微博 | 高级检索  
     


Ab initio study of phase stability in doped TiO2
Authors:Dorian A H Hanaor  Mohammed H N Assadi  Sean Li  Aibing Yu  Charles C Sorrell
Affiliation:1. School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
Abstract:Ab initio density functional theory calculations of the relative stability of the anatase and rutile polymorphs of TiO2 were carried out using all-electron atomic orbitals methods with local density approximation. The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F? doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F?>?Si?>?Fe?>?Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号