首页 | 本学科首页   官方微博 | 高级检索  
     


Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications
Authors:Sergio Zlotnik  Pedro Díez  David Modesto  Antonio Huerta
Affiliation:1. Laboratori de Càlcul Numèric (LaCàN). E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, E-08034 Spain;2. Laboratori de Càlcul Numèric (LaCàN). E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, E-08034 Spain

Correspondence to: Antonio Huerta, Laboratori de Càlcul Numèric (LaCàN), E.T.S. Ingenieros de Caminos, Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

antonio.huerta@upc.edu

Abstract:The solution of a steady thermal multiphase problem is assumed to be dependent on a set of parameters describing the geometry of the domain, the internal interfaces and the material properties. These parameters are considered as new independent variables. The problem is therefore stated in a multidimensional setup. The proper generalized decomposition (PGD) provides an approximation scheme especially well suited to preclude dramatically increasing the computational complexity with the number of dimensions. The PGD strategy is reviewed for the standard case dealing only with material parameters. Then, the ideas presented in Ammar et al., “Parametric solutions involving geometry: A step towards efficient shape optimization.” Comput. Methods Appl. Mech. Eng., 2014; 268 :178–193] to deal with parameters describing the domain geometry are adapted to a more general case including parametrization of the location of internal interfaces. Finally, the formulation is extended to combine the two types of parameters. The proposed strategy is used to solve a problem in applied geophysics studying the temperature field in a cross section of the Earth crust subsurface. The resulting problem is in a 10-dimensional space, but the PGD solution provides a fairly accurate approximation (error ≤1%) using less that 150 terms in the PGD expansion. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:reduced-order model  proper generalized decomposition (PGD)  geometry parametrization  interface  thermal cross section  geophysics  inverse problem
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号