摘 要: | 针对现有噪声图像分类效率低的问题,提出一种改进的Darknet噪声图像分类算法。去掉Darknet网络输出部分的1×1卷积层,将第19层卷积核数量改为4,在网络最后加上Softmax层,实现网络分类功能。在网络passthrough层和第6~8层后分别引入Dropout层,在卷积层中引入L2正则化来避免网络过拟合。将网络第10层和第11层,第12层和第13层,第15层和第16层,第17层和第18层改为4个残差块,解决反向传播权值更新时梯度消失问题。从CIFAR-10数据集上取20 000张图片,经128×128尺寸变换后分别添加高斯噪声、泊松噪声、盐噪声和斑点噪声,对每张图片依类别进行One-hot编码,最后将图片和标签制作成训练集、验证集和测试集。4种算法实验结果对比表明,改进的Darknet网络对彩色噪声图像分类准确率可达0.904,远高于其他3种算法分类准确率。
|