Abstract: | The solidification process of a horizontally continuously cast gray iron bar of 4.6cm in diame- ter was modelled.The function describing the distribution of heat flux at the internal surface of graphite sleeve,which was equal to that on the surface of the iron bar,was inversely derived using numerical calculation from the temperature distribution in the sleeve measured in real production.By using the distribution of heat flux as a boundary condition on the surface of the iron bar,the numerical simulation on solidification of the iron bar taking longitudinal heat conduction into account was made.The profile of solidification front obtained from the numer- ical simulation was approximately coincident with that in real production.In addition,the quantitative relationships of the thickness of solidified shell at the exit of the mold to the main technological parameters,including the temperature of liquid iron at the entrance of the mold, the moving speed of the bar and the intensity of water cooling,were obtained from the numeri- cal simulation. |