Inhibitors of human immunodeficiency virus integrase |
| |
Authors: | MR Fesen KW Kohn F Leteurtre Y Pommier |
| |
Affiliation: | Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892. |
| |
Abstract: | In an effort to further extend the number of targets for development of antiretroviral agents, we have used an in vitro integrase assay to investigate a variety of chemicals, including topoisomerase inhibitors, antimalarial agents, DNA binders, naphthoquinones, the flavone quercetin, and caffeic acid phenethyl ester as potential human immunodeficiency virus type 1 integrase inhibitors. Our results show that although several topoisomerase inhibitors--including doxorubicin, mitoxantrone, ellipticines, and quercetin--are potent integrase inhibitors, other topoisomerase inhibitors--such as amsacrine, etoposide, teniposide, and camptothecin--are inactive. Other intercalators, such as chloroquine and the bifunctional intercalator ditercalinium, are also active. However, DNA binding does not correlate closely with integrase inhibition. The intercalator 9-aminoacridine and the polyamine DNA minor-groove binders spermine, spermidine, and distamycin have no effect, whereas the non-DNA binders primaquine, 5,8-dihydroxy-1,4-naphthoquinone, and caffeic acid phenethyl ester inhibit the integrase. Caffeic acid phenethyl ester was the only compound that inhibited the integration step to a substantially greater degree than the initial cleavage step of the enzyme. A model of 5,8-dihydroxy-1,4-naphthoquinone interaction with the zinc finger region of the retroviral integrase protein is proposed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|