首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and Characterization of Submicron-to-Micron Scale, Monodisperse, Spherical, and Nonporous Zirconia Particles
Authors:Bingwen Yan  Clayton V McNeff  Peter W Carr  Alon V McCormick
Affiliation:ZirChrom Separations, Inc., Anoka, Minnesota 55303; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455; Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455
Abstract:Monodisperse, spherical, and nonporous zirconia particles ranging from submicrons to microns for use as supports for capillary electrophoresis and chromatography were synthesized by the controlled hydrolysis of zirconium tetra-alkoxides in alcohol solutions in the presence of long-chain organic acids. Particle characteristics varied as a function of water concentration, the chain length of the organic acid, aging time, temperature, and extent of stirring. Changing these experimental parameters affected particle size, particle size distribution, and the degree of particle aggregation. Submicron particles were made by increasing the water concentration and decreasing aging time. Particle size increases as temperature during the aging period increases. Most importantly, large monodisperse particles (4 μm) could be made by extended stirring. In general, we found that particle size increases as the chain length of the organic acid increases. We also found that gentle rotation during the aging period prevented both particle settling and secondary nucleation. This allowed the production of large particles. BET nitrogen adsorption uptake measurements demonstrate that the particles could be sintered, without aggregating them, to remove virtually all internal porosity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号