首页 | 本学科首页   官方微博 | 高级检索  
     

基于弱监督学习的去噪受限玻尔兹曼机特征提取算法
引用本文:杨杰,孙亚东,张良俊,刘海波. 基于弱监督学习的去噪受限玻尔兹曼机特征提取算法[J]. 电子学报, 2014, 42(12): 2365-2370. DOI: 10.3969/j.issn.0372-2112.2014.12.005
作者姓名:杨杰  孙亚东  张良俊  刘海波
作者单位:武汉理工大学光纤传感技术与信息处理教育部重点实验室, 湖北武汉 430070
基金项目:国家自然科学基金(No.51479159);交通运输部软科学项目
摘    要:针对现有特征提取方法难以实现从含有复杂背景的图像中提取有用目标特征的瓶颈问题,提出了基于弱监督学习的去噪受限玻尔兹曼机特征提取算法.首先,利用训练样本,通过无监督学习方式训练一个标准受限玻尔兹曼机模型,从而获得一个包含可视单元层和隐藏单元层的层次结构模型;然后,对可视层的每个单元引入二值转换单元,对隐藏层,根据各节点的激活值大小和激活频率将其分为两组:前景特征隐层单元和背景特征隐层单元,得到一个二元混合式去噪玻尔兹曼机的模型;最后,通过多模交互方式,利用有限数量的样本标签信息对输入样本逐像素地进行采样训练,以此来提取目标特征.实验表明,本文的特征提取算法能够有效地从复杂的干扰背景中提取目标特征,提高了目标识别精度.

关 键 词:特征提取  受限玻尔兹曼机  目标识别  
收稿时间:2014-01-03

Weakly Supervised Learning with Denoising Restricted Boltz mann Machines for Extracting Featu res
YANG Jie,SUN Ya-dong,ZHANG Liang-jun,LIU Hai-bo. Weakly Supervised Learning with Denoising Restricted Boltz mann Machines for Extracting Featu res[J]. Acta Electronica Sinica, 2014, 42(12): 2365-2370. DOI: 10.3969/j.issn.0372-2112.2014.12.005
Authors:YANG Jie  SUN Ya-dong  ZHANG Liang-jun  LIU Hai-bo
Affiliation:Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China
Abstract:Existing feature extraction algorithms are difficult to capture useful information from complex images.A feature extraction approach is proposed based on the weakly supervised learning with denoising restricted Boltzmann machine(RBM).First,a standard RBM is pre-trained in an unsupervised learning way,which provides a hierarchical mode with a visible layer and a hidden layer.Second,for the visible layer,a stochastic binary switch node is employed.And for the hidden layer,it is divided into foreground-hidden nodes and background-hidden nodes based on the score of each hidden node's activation values and times,thus we can achieve a binary mixture denoising RBMs.Finally,the pixel-wise denoising RBMs is trained by using small number label information and stochastic switch nodes through multiplicative interaction.The experimental results show that significant performance improvement is achieved with our proposed method.
Keywords:feature extraction  restricted Boltzmann machine(RBM)  object recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号