摘 要: | 文中针对传统并行K-means聚类算法时间复杂度比较高的问题,结合Hadoop平台以及MapReduce编程模型的优势,提出了利用Hadoop及MapReduce编程模型实现大数据量下的K-means聚类算法。其中,Map函数完成每条记录到各个质心距离的计算并标记其所属类别,Reduce函数完成质心的更新,同时计算每条数据到其所属中心点的距离,并累计求和。通过实验,验证了K-means算法部署在Hadoop集群上并行化运行,在处理大数据时,同传统的串行算法相比,确实能够降低时间复杂度,而且表现出很好的稳定性和扩展性。
|