首页 | 本学科首页   官方微博 | 高级检索  
     

保持高分辨率信息的无锚点框检测算法
引用本文:何泽文,张文生. 保持高分辨率信息的无锚点框检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 580-589. DOI: 10.3724/SP.J.1089.2021.18541
作者姓名:何泽文  张文生
作者单位:中国科学院自动化研究所精密感知与控制中心 北京 100190;中国科学院大学 北京 100049
基金项目:科技创新2030"新一代人工智能"重大项目
摘    要:目标检测逐渐成为视觉研究社区的关键领域,而其挑战之一是检测器难以准确地定位不同尺度的物体.面向图像中的目标检测应用,提出了高分辨率-无锚点框(HOAR)检测策略来应对物体尺度多变的挑战.HOAR将待测图像输入多条通路(对应不同尺度)并行的高分辨率网络,并提取每条通路上的输出特征图作为图像在每种尺度下的深度特征表示;然后...

关 键 词:目标检测  高分辨率网络  无锚点框检测  多尺度特征融合

High Resolution Information Reserved Anchor-Free Detection Algorithm
He Zewen,Zhang Wensheng. High Resolution Information Reserved Anchor-Free Detection Algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(4): 580-589. DOI: 10.3724/SP.J.1089.2021.18541
Authors:He Zewen  Zhang Wensheng
Affiliation:(Precise Perception and Control Research Center,Institute of Automation,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049)
Abstract:Recently,object detection has gradually become a critical domain in the visual research community,while it’s also challenging to locate objects of different scales accurately for detectors.For the application of detecting objects in images,a high resolution anchor free(HOAR)detection strategy is proposed to meet the challenge of variable object scales.HOAR first inputs the image into a parallel high-resolution network with multiple paths(which is corresponding to different scales).Then the output feature map is extracted from each path as the deep feature representation of the image at each scale.Next,the dense feature pyramid(DenseFPN)is adopted to fuse the information of these feature maps to obtain the re-combined feature maps of multiple scales.Finally,the anchor-free detection sub-network is used to determine the object’s category and rectangle box position of each point on these feature maps.To verify the effectiveness of HOAR,comparative experiments are carried out on COCO dataset.First,the results on ablation study show the necessity of each module in the HOAR strategy.Second,the evaluation metric of detection,namely mAP,of HOAR reaches 40.5 on the validation set,which is significantly higher than mAP of all baseline models and some SOTA methods.In addition,the size of model parameters of HOAR strategy is significantly less than that of baseline models.
Keywords:object detection  high resolution network  anchor-free detection  multi-level feature fusion
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号