首页 | 本学科首页   官方微博 | 高级检索  
     

高饱和磁感Fe82Si3.8B13.9C0.3非晶铁芯的退火及浸漆工艺
引用本文:宋苏,陈文智,张广强,刘洋,郑伟,张迁,周少雄.高饱和磁感Fe82Si3.8B13.9C0.3非晶铁芯的退火及浸漆工艺[J].金属热处理,2021,46(2):61-65.
作者姓名:宋苏  陈文智  张广强  刘洋  郑伟  张迁  周少雄
作者单位:1.钢铁研究总院, 北京 100081; 2.江苏集萃安泰创明先进能源材料研究院有限公司, 江苏 常州 213000; 3.安泰科技股份有限公司, 北京 100081; 4.非晶节能材料产业技术创新战略联盟, 北京 100081
基金项目:国家重点研发计划;新型研发机构建设项目;北京市科技专项
摘    要:研究了不同磁场退火和浸漆固化工艺对Fe82Si3.8B13.9C0.3非晶合金环形铁芯损耗和磁性能的影响,并与1K101合金铁芯进行了对比。结果表明:与1K101合金相比,Fe82Si3.8B13.9C0.3合金铁芯的最佳退火温度低于1K101合金,其中纵磁退火时达到最低,为330 ℃。纵磁退火Fe82Si3.8B13.9C0.3合金铁芯有着更高的饱和磁感应强度,B3500 A/m=1.611 T。经350 ℃无磁场退火处理后,Fe82Si3.8B13.9C0.3合金铁芯的损耗P50 Hz, 1.4 T=0.360 W/kg,稍高于1K101合金;经330 ℃纵磁退火处理后,Fe82Si3.8B13.9C0.3合金铁芯的损耗P50 Hz, 1.4 T=0.257 W/kg,也高于1K101合金;经350 ℃横磁退火处理后损耗P50 Hz, 1.4 T=0.163 W/kg,低于1K101合金。纵磁退火Fe82Si3.8B13.9C0.3合金铁芯经浸漆固化处理后,磁通密度B800 A/m=1.341 T,比纵磁退火1K101合金浸漆固化铁芯高15%;纵磁退火且浸漆的Fe82Si3.8B13.9C0.3合金铁芯损耗低于1K101合金浸漆铁芯,且随着频率升高优势更加明显;当频率大于1000 Hz时,纵磁退火且浸漆的Fe82Si3.8B13.9C0.3合金铁芯的损耗值低于未浸漆铁芯。

关 键 词:高饱和磁感应强度  非晶铁芯  磁场退火  浸漆固化  软磁性能  损耗  
收稿时间:2020-07-20

Annealing and dipping paint curing process of high saturation magnetic induction Fe82 Si3. 8 B13. 9 C0. 3 amorphous core
Song Su,Chen Wenzhi,Zhang Guangqiang,Liu Yang,Zheng Wei,Zhang Qian,Zhou Shaoxiong.Annealing and dipping paint curing process of high saturation magnetic induction Fe82 Si3. 8 B13. 9 C0. 3 amorphous core[J].Heat Treatment of Metals,2021,46(2):61-65.
Authors:Song Su  Chen Wenzhi  Zhang Guangqiang  Liu Yang  Zheng Wei  Zhang Qian  Zhou Shaoxiong
Affiliation:1. Central Iron and Steel Research Institute, Beijing 100081, China; 2. Jiangsu JITRI Advanced Energy & Materials Research Institute Co., Ltd., Changzhou Jiangsu 213000, China; 3. Advanced Technology and Materials Co., Ltd., Beijing 100081, China; 4. Technology Innovation Strategic Allicance of China Amorphous Energy Saving Materials Industry, Beijing 100081, China
Abstract:Effects of different annealing and dipping paint curing processes on the loss and magnetic properties of the Fe82Si3.8B13.9C0.3amorphous alloy toroidal core were studied and compared with 1 K101 alloy core.The results indicate that the optimum annealing temperature of the Fe82Si3.8B13.9C0.3alloy core is lower than that of 1 K101 alloy,and the lowest temperature is 330℃in longitudinal magnetic annealing.Longitudinal annealed Fe82Si3.8B13.9C0.3alloy core has higher saturation magnetic induction,B3500 A/m=1.611 T.After annealing at 350℃without magnetic field,the loss of the longitudinal annealed Fe82Si3.8B13.9C0.3alloy is slightly higher than that of 1 K101 alloy,P50 Hz,1.4 T=0.360 W/kg.After longitudinal magnetic annealing at 330℃,the loss is also higher than that of the 1 K101 alloy,P50 Hz,1.4 T=0.257 W/kg.After transverse magnetic annealing at 350℃,the loss is lower than 1 K101 alloy,P_(50 Hz,1.4) T=0.163 W/kg.After cured by dipping,the magnetic flux density of the Fe82Si3.8B13.9C0.3alloy core is 15%higher than that of the 1 K101 alloy and B800 A/m=1.341 T.The core loss of the Fe82Si3.8B13.9C0.3alloy is lower than that of the 1 K101 alloy after longitudinal magnetic annealing and dipping paint curing,and the advantage is more obvious with the increase of frequency.When the frequency is higher than 1000 Hz,the loss value of longitudinal magnetic annealed and cured Fe82Si3.8B13.9C0.3alloy core is lower than that of the uncured core.
Keywords:high saturation magnetic induction  amorphous core  magnetic field annealing  dipping paint curing  soft magnetic property  loss
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《金属热处理》浏览原始摘要信息
点击此处可从《金属热处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号