首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications
Authors:Dimitar Dimov  Iddo Amit  Olivier Gorrie  Matthew D Barnes  Nicola J Townsend  Ana I S Neves  Freddie Withers  Saverio Russo  Monica Felicia Craciun
Affiliation:Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
Abstract:There is a constant drive for development of ultrahigh performance multifunctional construction materials by the modern engineering technologies. These materials have to exhibit enhanced durability and mechanical performance, and have to incorporate functionalities that satisfy multiple uses in order to be suitable for future emerging structural applications. There is a wide consensus in the research community that concrete, the most used construction material worldwide, has to be engineered at the nanoscale, where its chemical and physiomechanical properties can be truly enhanced. Here, an innovative multifunctional nanoengineered concrete showing an unprecedented range of enhanced properties when compared to standard concrete, is reported. These include an increase of up to 146% in the compressive and 79.5% in the flexural strength, whilst at the same time an enhanced electrical and thermal performance is found. A surprising decrease in water permeability by nearly 400% compared to normal concrete makes this novel composite material ideally suitable for constructions in areas subject to flooding. The unprecedented gamut of functionalities that are reported in this paper are produced by the addition of water‐stabilized graphene dispersions, an advancement in the emerging field of nanoengineered concrete which can be readily applied in a more sustainable construction industry.
Keywords:graphene  nanoengineered concrete  ultrahigh performance composites  water impermeable concrete
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号