首页 | 本学科首页   官方微博 | 高级检索  
     


Few‐Layer MoSe2 Nanosheets with Expanded (002) Planes Confined in Hollow Carbon Nanospheres for Ultrahigh‐Performance Na‐Ion Batteries
Authors:Hui Liu  Hong Guo  Beihong Liu  Mengfang Liang  Zhaolin Lv  Keegan R Adair  Xueliang Sun
Affiliation:1. Yunnan Key Laboratory of Micro/Nano Materials and Technology, School of Materials Science and Engineering, Yunnan University, Kunming, China;2. Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
Abstract:Sodium‐ion batteries (SIBs) are considered as a promising alternative to lithium‐ion batteries, due to the abundant reserves and low price of Na sources. To date, the development of anode materials for SIBs is still confronted with many serious problems. In this work, encapsulation‐type structured MoSe2@hollow carbon nanosphere (HCNS) materials assembled with expanded (002) planes few‐layer MoSe2 nanosheets confined in HCNS are successfully synthesized through a facile strategy. Notably, the interlayer spacing of the (002) planes is expanded to 1.02 nm, which is larger than the intrinsic value of pristine MoSe2 (0.64 nm). Furthermore, the few‐layer nanosheets are space‐confined in the inner cavity of the HCNS, forming hybrid MoSe2@HCNS structures. When evaluated as anode materials for SIBs, it shows excellent rate capabilities, ultralong cycling life with exceptional Coulombic efficiency even at high current density, maintaining 501 and 471 mA h g?1 over 1000 cycles at 1 and 3 A g?1, respectively. Even when cycled at current densities as high as 10 A g?1, a capacity retention of 382 mA h g?1 can be achieved. The expanded (002) planes, 2D few‐layer nanosheets, and unique carbon shell structure are responsible for the ultralong cycling and high rate performance.
Keywords:encapsulation‐type structure  few‐layer MoSe2 nanosheets  sodium‐ion batteries  ultralong cycling life
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号