首页 | 本学科首页   官方微博 | 高级检索  
     


Particle‐Free Emulsions for 3D Printing Elastomers
Authors:Brittany M. Rauzan  Arif Z. Nelson  Sean E. Lehman  Randy H. Ewoldt  Ralph G. Nuzzo
Affiliation:1. Department of Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana‐Champaign, Urbana, IL, USA;2. Department of Mechanical Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana‐Champaign, Urbana, IL, USA
Abstract:3D printing is a rapidly growing field that requires the development of yield‐stress fluids that can be used in postprinting transformation processes. There is a limited number of yield‐stress fluids currently available with the desired rheological properties for building structures with small filaments (≤l00 µm) with high shape‐retention. A printing‐centric approach for 3D printing particle‐free silicone oil‐in‐water emulsions with a polymer additive, poly(ethylene oxide) is presented. This particular material structure and formulation is used to build 3D structure and to pattern at filament diameters below that of any other known material in this class. Increasing the molecular weight of poly(ethylene oxide) drastically increases the extensibility of the material without significantly affecting shear flow properties (shear yield stress and linear viscoelastic moduli). Higher extensibility of the emulsion correlates to the ability of filaments to span relatively large gaps (greater than 6 mm) when extruded at large tip diameters (330 µm) and the ability to extrude filaments at high print rates (20 mm s?1). 3D printed structures with these extensible particle‐free emulsions undergo postprinting transformation, which converts them into elastomers. These elastomers can buckle and recover from extreme compressive strain with no permanent deformation, a characteristic not native to the emulsion.
Keywords:3D printing  elastomers  emulsions  extensibility  rheology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号