首页 | 本学科首页   官方微博 | 高级检索  
     


Growth and Luminescence of Polytypic InP on Epitaxial Graphene
Authors:Samik Mukherjee  Nima Nateghi  Robert M Jacobberger  Etienne Bouthillier  Maria de la Mata  Jordi Arbiol  Toon Coenen  Dhan Cardinal  Pierre Levesque  Patrick Desjardins  Richard Martel  Micheal S Arnold  Oussama Moutanabbir
Affiliation:1. Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, Canada;2. Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, USA;3. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain;4. ICREA, Barcelona, Catalonia, Spain;5. DELMIC BV, Delft, The Netherlands;6. Department of Chemistry, University of Montreal, Montreal, QC, Canada
Abstract:Van der Waals epitaxy is an attractive alternative to direct heteroepitaxy where the forced coherency at the interface cannot sustain large differences in lattice parameters and thermal expansion coefficients between the substrate and the epilayer. Herein, the growth of monocrystalline InP on Ge and SiO2/Si substrates using graphene as an interfacial layer is demonstrated. Micrometer‐sized InP crystals are found to grow with interfaces of high crystalline quality and with different degrees of coalescence depending on the growth conditions. Some InP crystals exhibit a polytypic structure, consisting of alternating zinc‐blende and wurtzite phases, forming a type‐II homojunction with well (barrier) width of about 10 nm. The optical properties, investigated using room temperature nano‐cathodoluminescence, indicate the signatures of the direct optical transitions at 1.34 eV across the gap of the zinc‐blende phase and the indirect transitions at ≈ 1.31 eV originating from the alternating zinc‐blende and wurtzite phases. Additionally, the InP nanorods, found growing mainly on the graphene/SiO2/Si substrate, show optical transition across the gap of the wurtzite phase at ≈ 1.42 eV. This demonstration of InP growth on graphene and the correlative study between the structure and optical properties pave the way to develop hybrid structures for potential applications in integrated photonic and optoelectronic devices.
Keywords:graphene  indium phosphide  optical emission  polytypic crystal phase  van der Waals heteroepitaxy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号