首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoparticle‐Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo
Authors:Bernhard J Müller  Alexander V Zhdanov  Sergey M Borisov  Tara Foley  Irina A Okkelman  Vassiliy Tsytsarev  Qinggong Tang  Reha S Erzurumlu  Yu Chen  Haijiang Zhang  Claudio Toncelli  Ingo Klimant  Dmitri B Papkovsky  Ruslan I Dmitriev
Affiliation:1. Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria;2. ABCRF, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland;3. Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland;4. Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA;5. Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA;6. Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland;7. Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
Abstract:The imaging of real‐time fluxes of K+ ions in live cell with high dynamic range (5–150 × 10?3m ) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney, and other tissues. In particular, the research on high‐performance deep‐red fluorescent nanoparticle‐based biosensors is highly anticipated. It is found that boron‐dipyrromethene (BODIPY)‐based K+‐sensitive fluoroionophore FI3 encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability, and fluorescence lifetime imaging microscopy, it is confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. FI3 nanoparticles in real‐time live cell imaging are evaluated and it is found highly useful for monitoring intra‐ and extracellular K+ dynamics in cultured neurons. Proof‐of‐concept in vivo brain imaging confirms applicability of the biosensor for visualization of epileptic seizures. Collectively, these data make fluoroionophore FI3 a versatile cross‐platform fluorescent biosensor, broadly compatible with diverse experimental models, and crown‐ether‐based polymer nanoparticles can provide a new venue for the design of efficient fluorescent probes.
Keywords:bionanotechnology  core/shell nanoparticles  live cell imaging  medical applications  sensors/biosensors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号