首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural evolution of Fe3B/Nd2Fe14B nanocomposite magnets microalloyed with Cu and Nb
Authors:D H Ping  K Hono  H Kanekiyo  S Hirosawa
Affiliation:

1 National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305-0047, Japan

2 Sumitomo Special Metals Co., Ltd, 2-15-17 Egawa, Osaka 618-0013, Japan

Abstract:The microalloying effect of Cu and Nb on the microstructure and magnetic properties of an Fe3B/Nd2Fe14B nanocomposite permanent magnet has been studied by transmission electron microscopy (TEM) and atom probe field ion microscopy (APFIM). Additions of Cu are effective in refining the nanocomposite microstructure and the temperature range of the heat treatment to optimize the hard magnetic properties is significantly extended compared with that of the ternary alloy. Combined addition of Cu and Nb is further effective in reducing the grain size. Optimum magnetic properties obtained by annealing a melt-spun Nd4.5Fe75.8B18.5Cu0.2Nb1 amorphous ribbon at 660°C for 6 min are Br=1.25 T, HcJ=273 kA/m and (BH)max=125 kJ/m3. The soft magnetic Fe23B6 phase coexists with the Fe3B and Nd2Fe14B phases in the optimum microstructure of the Cu and Nb containing quinternary alloy. Three-dimensional atom probe (3DAP) results show that the finer microstructure is due to the formation of a high number density of Cu clusters prior to the crystallization reaction, which promote the nucleation of the Fe3B phase. The Nb atoms appear to induce the formation of the Fe23B6 phase when the remaining amorphous phase is crystallized.
Keywords:Hard magnetic  Atom probe  Transmission electron microscopy (TEM)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号