首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation Research of Vaporization and Pressure Variation in a Cryogenic Propellant Tank at the Launch Site
Authors:Liang Chen  Guo-zhu Liang
Affiliation:1. School of Astronautics, Beijing University of Aeronautics and Astronautics, XueYuan Road No.37, HaiDian District, Beijing, China
Abstract:In order to improve depiction of pressure variation and investigate the interrelation among the physical processes in propellant tanks, a 2D axial symmetry Volume-of-Fluid (VOF) CFD model is established to simulate a large-sized liquid propellant tank when the rocket is preparing for launch with propellant loaded at the launch site. The numerical model is considered with propellant free convection, heat transfer between the tank and the external environment, thermal exchange between propellant and inner tank wall surfaces, gas compressibility, and phase change modeled under the assumption of thermodynamic equilibrium. Vaporization rate of the vented LH2 tank and prediction of pressure change in the tank pressurized with GHe are obtained through simulation. We analysis the distributions of phase, temperature, and velocity vectors to reveal interactions among the propellant’s own convection motion, heat transfer and phase change. The results show that the vaporization rate is mainly affected by heat leaks though the tank wall when the tank is vented, but it does not completely accord with the trend of the leakage because of convection motion and temperature nonuniformity of the liquid propellant in the tank. We also find that the main factors on pressure variation in the pressurized tank are the heat transfer on the tank wall surface bonding the ullage and propellant vaporization which has comparatively less influence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号