以拟合优度为基础的两个分类算法及其在癌细胞自动识别中的应用 |
| |
引用本文: | 蒋代梅,陈祖荫,陈传涓. 以拟合优度为基础的两个分类算法及其在癌细胞自动识别中的应用[J]. 北京工业大学学报, 1982, 0(1) |
| |
作者姓名: | 蒋代梅 陈祖荫 陈传涓 |
| |
作者单位: | 北工大计算机科学系,北工大计算机科学系,中国科学院生物物理研究所 应届毕业研究生 |
| |
摘 要: | 本文提出了集群方法“非参数分级集群算法”及更为精确的拟合优度判据,并与传统的系统聚类方法进行了对此。将该方法与K—最近邻判决规则结合,提出了用于判别的固定邻域判决算法。全部算法用BCY语言在TQ—16机上实现。处理了细胞图象自动分析数据并取得了有益的结果。
|
Two Classification Algorithms Based on the Goodness of Fit and Their Application in the Automated Recognition of Cancer Cells |
| |
Abstract: | In this paper, further discussion on the nonparametric clustering is made. An improved nonparametric classical clustering algorithm and a more accurate criterion based on the goodness of fit are advanced. Combining this method with the K-nearest neighbor decision rule, a fixed neighborhood, decision algorithm is developed. The above algorithms -are realized in the BCY languge on the TQ-16. computer. The cells are divided into classes by the above methods and useful results are achieved. |
| |
Keywords: | |
本文献已被 CNKI 等数据库收录! |
|