首页 | 本学科首页   官方微博 | 高级检索  
     


Relaxation of the axial strain induced stresses in double–coated optical fibers
Authors:Sham‐Tsong Shiue
Abstract:The axial strain induced stresses in double‐coated optical fibers are analyzed by the viscoelastic theory. A closed form solution of the axial strain induced viscoelastic stresses is obtained. The viscoelastic stresses are a function of the radii, Young's moduli, relaxation times and Poisson's ratios of the polymeric coatings. If the applied axial strain linearly increases, the induced stresses increase with the time. On the other hand, if the axial strain is fixed, besides the axial stress in the glass fiber, the stresses exponentially decrease with the time. The relaxation of stresses is strongly dependent on the relaxation times of the polymeric coatings. If the relaxation time of the polymeric coating is very long, the viscous behavior of the polymeric coatings will not appear, and the axial strain induced stresses solved by the viscoelastic theory are the same as those solved by the elastic theory. On the other hand, if the relaxation time of the polymeric coating is very short, the relaxation of stresses is very apparent. A compressive radial stress at the interface of the glass fiber and primary coating will result in an increase of the transmission losses, and a tensile interfacial radial stress will possibly produce debonding at the interface of the glass fiber and primary coating. To minimize this interfacial radial stress, the radius, Young's modulus and Poisson's ratio of the polymeric coatings should be appropriately selected, and the relaxation time of the primary coating should be shortened. Finally, the stresses in single‐coated and double‐coated optical fibers are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号