首页 | 本学科首页   官方微博 | 高级检索  
     


Developmental Toxicology of Metal Mixtures in Drosophila: Unique Properties of Potency and Interactions of Mercury Isoforms
Authors:Catherine R Beamish  Tanzy M Love  Matthew D Rand
Affiliation:1.Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;2.Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
Abstract:Mercury ranks third on the U.S. Agency of Toxic Substances and Disease Registry priority list of hazardous substances, behind only arsenic and lead. We have undertaken uncovering the mechanisms underlying the developmental toxicity of methylmercury (MeHg), inorganic mercury (HgCl2), lead acetate (Pb), and sodium arsenite (As). To probe these differences, we used the Drosophila model, taking advantage of three developmental transitions—pupariation, metamorphosis, and eclosion—to differentiate potentially unique windows of toxicity. We elaborated dose response profiles for each individual metal administered in food and accounted for internal body burden, also extending analyses to evaluate combinatorial metal mixture effects. We observed all four metals producing larval lethality and delayed pupariation, with MeHg being most potent. Compared to other metals, MeHg’s potency is caused by a higher body burden with respect to dose. MeHg uniquely caused dose-dependent failure in eclosion that was unexpectedly rescued by titrating in HgCl2. Our results highlight a unique developmental window and toxicokinetic properties where MeHg acts with specificity relative to HgCl2, Pb, and As. These findings will serve to refine future studies aimed at revealing tissue morphogenesis events and cell signaling pathways, potentially conserved in higher organisms, that selectively mediate MeHg toxicity and its antagonism by HgCl2.
Keywords:heavy metals  mixture  Drosophila  mercury  arsenic  lead  pupariation  metamorphosis  eclosion  toxicokinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号