首页 | 本学科首页   官方微博 | 高级检索  
     

船用燃气轮机低压压气机气动布局规律研究
引用本文:陈 鹏,任兰学,王 琦,姜 斌.船用燃气轮机低压压气机气动布局规律研究[J].热能动力工程,2021,36(9):10.
作者姓名:陈 鹏  任兰学  王 琦  姜 斌
作者单位:中国船舶集团有限公司第七〇三研究所,黑龙江 哈尔滨 150078;船舶与海洋工程动力系统国家工程实验室-海洋工程燃气轮机实验室,黑龙江 哈尔滨 150078;哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150001
基金项目:国家自然科学基金区域创新发展联合基金(U20A20298);国家科技重大专项(2017-II-0006-0019,2017-I-0009-0010)
摘    要:为缩短燃气轮机低压压气机的设计周期,获取一维设计中各关键设计参数分布规律,同时得到最优的一维设计参数选取方案,采用基于HARIKA算法的压气机一维设计与分析程序对某型船用低压压气机流量系数、载荷系数和反动度的轴向布局方法进行了研究并提炼了各参数分布的数学模型。其中,流量系数和载荷系数沿级分布为近似单峰值的三次多项式曲线,反动度分布为"二段式",通过改变流量系数和载荷系数的峰值点坐标和改变特定级反动度和反动度变化步长的方法,研究了不同布局方式对效率、喘振裕度以及压比的影响,最后结合优化算法得到了最优参数分布方案。结果发现:流量系数峰值位置在第6级,载荷系数在第5级或第6级时效率和喘振裕度性能较好;第四级反动度取值0.5~0.52时效率较高;相比载荷系数和反动度,流量系数对非设计工况性能影响更为显著,优化后的参数分布方案在各转速下喘振裕度均有所提高。

关 键 词:HARIKA  流量系数  载荷系数  反动度

Research on Aerodynamic Layout Rule of Low Pressure Compressor of Marine Gas Turbine
CHEN Peng,REN Lan-xue,WANG Qi,JIANG Bin.Research on Aerodynamic Layout Rule of Low Pressure Compressor of Marine Gas Turbine[J].Journal of Engineering for Thermal Energy and Power,2021,36(9):10.
Authors:CHEN Peng  REN Lan-xue  WANG Qi  JIANG Bin
Abstract:In order to shorten the design cycle of gas turbine low pressure compressor, obtain the distribution rule of key design parameters in one dimensional design, and achieve the optimal one dimensional design parameter selection scheme, the axial layout method for the flow coefficient, load coefficient and reaction degree of a certain marine low pressure compressor is studied and the mathematical model of each parameter distribution is refined by use of the compressor one dimensional design and analytical procedure based on HARIKA algorithm. Among them, the flow coefficient and load coefficient are approximately cubic polynomial curves with single peak along the level distribution, and the reaction degree distribution is two stage partition function. By changing the peak point coordinates of flow coefficient and load coefficient, and changing the reaction degree and reaction degree variable step of specific level, the effects of different layout modes on the efficiency, surge margin and pressure ratio are studied. Finally, the optimal parameter distribution scheme is obtained by combining the optimization algorithm. The results show that the peak position of the flow coefficient is at the sixth level, and the efficiency and surge margin are better when the load coefficient is at the fifth or sixth level, and the efficiency is higher when the reaction degree of the fourth stage is 0.5 to 0.52. Compared with the load coefficient and reaction degree, the flow coefficient has a more significant impact on the performance of off design conditions, and the optimized parameter distribution scheme has improved the surge margin at each rotational speed.
Keywords:HARIKA  flow coefficient  load coefficient  reaction degree
本文献已被 CNKI 等数据库收录!
点击此处可从《热能动力工程》浏览原始摘要信息
点击此处可从《热能动力工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号