首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波多分辨分解的HRP算法的快速实现方法
引用本文:刘东, 相敬林. 基于小波多分辨分解的HRP算法的快速实现方法[J]. 电子与信息学报, 2004, 26(1): 151-156.
作者姓名:刘东  相敬林
作者单位:西北工业大学航海工程学院,西安,710072;西北工业大学航海工程学院,西安,710072
摘    要:MP类分解具有很好地再现信号内部正交稀疏结构的能力,但分解普遍存在预响应和局部特性失配等特点,为此S.Jaggi等人提出HRP算法以获得更为准确的信号内部结构,但面临更为庞大的运算量。本文结合小波多分辨快速分解算法提出了在小波域实现HRP的快速算法,并进一步给出了减少运算时间的HRP的并行算法结构。理论和仿真实验表明,小波方法与HRP的结合不但可以大大减少HRP的运算量,而且有助于改善小波分析的结果,是一种很有前途的信号自适应分解和特征提取方法。

关 键 词:HRP算法   多分辨分解   稀疏   局部特性
文章编号:1009-5896(2004)01-0151-06
收稿时间:2002-07-22
修稿时间:2002-07-22

Fast HRP Algorithm Realization Methods Based on the Wavelet Multiresolution Decomposition
Liu Dong, Xiang Jing-lin. Fast HRP Algorithm Realization Methods Based on the Wavelet Multiresolution Decomposition[J]. Journal of Electronics & Information Technology, 2004, 26(1): 151-156.
Authors:Liu Dong  Xiang Jing-lin
Abstract:The Matching Pursuit(MP) algorithms display good performance of recurring the orthonorrnal sparse structure of signals, but the signal decomposition process widely exhibits pro-echo artifact and local mismatch, so HRP algorithm was proposed by S. .Jaggi, et al. to acquire more exact inner structure of signals. Unfortunely HRP algorithm is followed by more huge operation cost. The fast HRP algorithm is advanced at wavelet domain by taking advantage of wavelet multiresolution decomposition, and a parallel algorithm framework is used to further reduce operation time. Theory and simulation trials indicate that HRP algorithm at wavelet domain not only reduces HRP operation cost greatly, but also improves the effect of the wavelet analysis, thus it is a promising technique applied in adaptive signal decomposition and feature extraction.
Keywords:HRP algorithm   Multirosolution decomposition   Sparse   Local specialty
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号