首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络模型的混沌优化及其应用
引用本文:张春慨,邵惠鹤. 基于神经网络模型的混沌优化及其应用[J]. 化工自动化及仪表, 2000, 27(2): 19-22
作者姓名:张春慨  邵惠鹤
作者单位:上海交通大学,自动化系,上海,200030
摘    要:研究一种新型优化算法-混沌优化,提出加快解的疏敛速度和精度新方法,并与精确不可微罚函数结合来求解非线性约束优化问题。对不能用数学解析式精确表达的优化问题利用神经网络建模,在此基础上进行混沌搜索寻优。该方法应用于甲醛生产过程的稳态优化,获得较好的经济效益。

关 键 词:混沌状态 神经网络 甲醛 算法
修稿时间:1999-09-26

Chaos Optimization Based on Neural Network Model and Its Application
ZHANG Chun-kai,SHAO Hui-he. Chaos Optimization Based on Neural Network Model and Its Application[J]. Control and Instruments In Chemical Industry, 2000, 27(2): 19-22
Authors:ZHANG Chun-kai  SHAO Hui-he
Abstract:Chaos optimization method combined with exact nondifferentiable penalty function is proposed for solving nonlinear constraint optimization problems,and linear search is applied to speed the rate of convergence and improve the accuracy of solution.To solve the problem of establishing process staticstate model,artificial neural network is proposed.This method is applied to formaldehyde production process online optimization.Results show that ,the method is simple and easy to implement,robust in versatility,and it has high accuracy and reliability,so it is effective for chemical process optimization.
Keywords:chaos optimization  exact penalty function  soft sensing  formaldehyde production process
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号