首页 | 本学科首页   官方微博 | 高级检索  
     

一种快速的多目标跟踪非线性滤波算法
引用本文:田嘉洪,陈谋,姜长生. 一种快速的多目标跟踪非线性滤波算法[J]. 电光与控制, 2008, 15(2): 27-30
作者姓名:田嘉洪  陈谋  姜长生
作者单位:南京航空航天大学自动化学院,南京,210016;南京航空航天大学自动化学院,南京,210016;南京航空航天大学自动化学院,南京,210016
基金项目:航空支撑基金(05C52007),航空科学基金(04d52028)
摘    要:多机动目标跟踪问题是目前目标跟踪领域的一个重要研究方向,而数据关联与跟踪维持是多目标跟踪的核心部分。利用支持向量机在分类识别方面的优势,研究了基于支持向量机的数据关联方法。在此基础上,采用交互式多模型算法和无味卡尔曼滤波相结合的方法研究了多机动目标的跟踪问题。在该方法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,至少给出最佳估计的二阶近似。与传统的扩展卡尔曼(EKF)方法进行了仿真比较,仿真结果表明了该算法的有效性。

关 键 词:多目标跟踪  支持向量机  无味卡尔曼滤波  多模型算法  数据关联
文章编号:1671-637X(2008)02-0027-04
收稿时间:2006-10-16
修稿时间:2006-12-06

A fast nonlinear Kalman filter algorithm for multiple target tracking
TIAN Jia-hong,CHEN Mou,JIANG Chang-sheng. A fast nonlinear Kalman filter algorithm for multiple target tracking[J]. Electronics Optics & Control, 2008, 15(2): 27-30
Authors:TIAN Jia-hong  CHEN Mou  JIANG Chang-sheng
Abstract:Multiple maneuvering targets tracking is a research focus of target tracking at present.Data association and tracking maintaining are cores of multi-target tracking.Considering the advantage of Support Vector Machine(SVM) in classification and identification,we studied the method of data association of multiple maneuvering targets based on SVM.Then we studied the tracking problem of multiple maneuvering targets by using the combination of interacting multi-model and unscented Kalman filter algorithm.In the algorithm,the state and the biased error of the target are approximated by specified sample points.During each updating process,the sample points are propagated with the state equation and transformed with the nonlinear measurement equation.From these sample points,the posterior mean and covariance of the target state are obtained,and the biased error are accurately computed to the second order.Compared with the extended Kalman filter,the simulation results demonstrate the availability of the studied tracking algorithm.
Keywords:multi-target tracking  support vector machine  unscented Kalman filter  multi-model algorithm  data association
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号