首页 | 本学科首页   官方微博 | 高级检索  
     


Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/ester blends
Authors:R. O. Dunn  M. O. Bagby
Affiliation:(1) Oil Chemical Research, USDA, ARS, NCAUR, 1815 N. University St., 61604 Peoria, IL
Abstract:This work examines low-temperature properties of triglyceride-based alternate fuels for direct-injection compression-ignition engines. Methyl esters from transesterified soybean oil were studied as neat fuels and in blends with petroleum middle distillates (No. 1 or No. 2 diesel fuel). Admixed methyl esters composed of 5–30 vol% tallowate methyl esters in soyate methyl esters were also examined. Pour points, cloud points, and kinematic viscosities were measured; viscosities at cooler temperatures were studied to evaluate effects of sustained exposure. Low-temperature filterability studies were conducted in accordance with two standard methodologies. The North American standard was the low-temperature flow test (LTFT), and its European equivalent was the cold-filter plugging point (CFPP). With respect to cold-flow properties, blending methyl esters with middle distillates is limited to relatively low ester contents before the properties become preclusive. Under most conditions, cold-flow properties were not greatly affected by admixing the methyl esters with up to 30 vol% tallowate (before blending). Least squares analysis showed that both LTFT and CFPP of formulations containing at least 10 vol% methyl esters are linear functions of cloud point. In addition, statistical analysis of the LTFT data showed a strong 1:1 correlation between LTFT and CP. This result may prove crucial in efforts to improve low-temperature flow properties of alternate diesel fuels that contain methyl esters derived from triglycerides.
Keywords:Blends  cloud point  cold-filter plugging point  kinematic viscosity  low-temperature flow test  methyl esters  methyl soyate  methyl tallowate  pour point
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号