首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of rib spacing in proton-exchange membrane electrode assemblies
Authors:A. C. West  T. F. Fuller
Affiliation:(1) Department of Chemical Engineering, Materials Science, and Mining Engineering, Columbia University, 10027 New York, NY, USA;(2) International Fuel Cells, 06074 South Windsor, Connecticut, USA
Abstract:A two-dimensional design analysis of a membrane-electrode assembly for a proton-exchange membrane fuel cell is presented. Specifically, the ribs of the bipolar plates restrict the access of fuel and oxidant gases to the catalyst layer. The expected change in cell performance that results from the partial blocking of the substrate layer is studied by numerical simulation of the oxygen electrode and the membrane separator. The effects of rib sizing and the thickness of the gas-diffusion electrode on the current and water distributions within the cell are presented. For all of the cases considered, the two-dimensional effect only slightly alters the half-cell potential for a given applied current but has a significant influence on water management. Concentrated solution theory with variable transport properties is used in the membrane electrolyte to solve for the electrical potential and local water content. The Stefan-Maxwell equations are used in the gas-diffusion electrode to determine the local mole fractions of nitrogen, oxygen and water vapour. A control-volume formulation is used for the resolution of the coupled nonlinear differential equations. One advantage of the control-volume approach over finite-difference methods is the relative ease in which internal boundary points in fuel-cell and battery models are handled. This and other advantages are briefly discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号