首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental studies on shear failure of freeze-bonds in saline ice:: Part II: Ice-ice friction after failure and failure energy
Authors:Ada HV Repetto-Llamazares  Knut V HøylandEkaterina Kim
Affiliation:
  • Norwegian University of Science and Technology (NTNU), Trondheim, Norway
  • Abstract:This paper is the second of two papers that present and discusses the results from experiments where artificially created freeze-bonds made from saline ice were tested on direct shear with the freeze-bond oriented horizontally. It discusses the friction forces after freeze-bond failure and the failure energy.The friction force showed increasing linear trends with a non-zero intercept when plotted against the normal force. It shows that for low confinements Amonton's law is insufficient. For larger confinements the values of friction coefficient were in the range of previously reported measurements in ice-ice friction. A slightly decreasing trend of the frictional forces was found when the initial ice temperature increased.A Mohr-Coulomb type of model was proposed to model the ice-ice frictional stresses as function of the normal stresses. An empirical model was obtained to describe freeze-bond failure and subsequent deformation by introducing softening of the cohesion and angle of internal friction.The failure energy had similar trends to those observed for the freeze-bond shear strength when plotted against normal confinement, initial ice temperature and submersion time. Quadratic fitting to the data of failure energy as a function of freeze-bond shear strength allowed the estimation of the elastic shear modulus of the freeze-bond by applying a simple rheological model. The values found were between 2 kPa and 6 kPa which are very low compared with the shear elastic modulus for the ice blocks.
    Keywords:Saline ice  Freeze-bond  Shear  Strength  Energy  Friction
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号