首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes
Authors:Huang Xianhuai  Leal Marlen  Li Qilin
Affiliation:Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
Abstract:Natural organic matter (NOM) fouling continues to be the major barrier to efficient application of microfiltration (MF) and ultrafiltration (UF) in drinking water treatment. In this study, the potential of TiO2/UV photocatalytic oxidation to control fouling of membranes by NOM was evaluated. Decomposition kinetics of NOM was investigated using a commercial TiO2 catalyst, and the effect of various experimental parameters including TiO2 dosage and initial total organic carbon (TOC) concentration were also determined. The reaction kinetics was found to increase with increasing TiO2 dosage, but decrease with increasing initial TOC concentration. Even though the rate of TOC removal was relatively low, the TiO2/UV process was very effective in controlling membrane fouling by NOM. At a TiO2 concentration of 0.5 g/L, fouling of both an MF and a UF membrane was completely eliminated after 20 min of treatment. Careful analyses of specific UV absorbance (SUVA) and molecular weight (MW) distribution of NOM revealed that the effectiveness in membrane fouling control is the result of the changes in NOM molecular characteristics, namely MW and SUVA due to the preferential removal and transformation of large, hydrophobic NOM compounds. Results from this study show that TiO2/UV photocatalytic oxidation is a promising pretreatment method for MF and UF systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号