首页 | 本学科首页   官方微博 | 高级检索  
     


Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific DNA inversion
Authors:SK Merickel  MJ Haykinson  RC Johnson
Affiliation:Department of Biological Chemistry, School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1737, USA.
Abstract:The Hin DNA invertase becomes catalytically activated when assembled in an invertasome complex containing two Fis dimers bound to an enhancer segment. The region of Fis responsible for transactivation of Hin contains a mobile beta-hairpin arm that extends from each dimer subunit. We show here that whereas both Fis dimers must be capable of activating Hin, Fis heterodimers that have only one functional activating beta-arm are sufficient to form catalytically competent invertasomes. Analysis of homodimer and heterodimer mixes of different Hin mutants suggests that Fis must activate each subunit of the two Hin dimers that participate in catalysis. These experiments also indicate that all four Hin subunits must be coordinately activated prior to initiation of the first chemical step of the reaction and that the process of activation is independent of the catalytic steps of recombination. We propose a molecular model for the invertasome structure that is consistent with current information on protein-DNA structures and the topology of the DNA strands within the recombination complex. In this model, a single Fis activation arm could contact amino acids from both Hin subunits at the dimer interface to induce a conformational change that coordinately positions the active sites close to the scissile phosphodiester bonds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号