首页 | 本学科首页   官方微博 | 高级检索  
     

油井作业中传感器误差补偿方法的研究
引用本文:周宁,彭继慎. 油井作业中传感器误差补偿方法的研究[J]. 传感器与微系统, 2010, 29(6)
作者姓名:周宁  彭继慎
作者单位:辽宁工程技术大学电气与控制工程学院;
摘    要:为了提高油井作业中压力传感器的测量精度,提出了一种基于粒子群优化BP神经网络的误差补偿方法.利用粒子群算法的全局寻优和收敛速度快的特点,训练网络的权值,能有效地改善BP神经网络传统算法的收敛速度和学习能力.结果表明:这种方法大大提高了压力传感器在油井作业中的测量精度和稳定性,也提高了油田作业的工作效率.

关 键 词:粒子群优化  误差补偿  BP神经网络  压力传感器

Research on sensor nonlinear error compensation in wildcat working
ZHOU Ning,PENG Ji-shen. Research on sensor nonlinear error compensation in wildcat working[J]. Transducer and Microsystem Technology, 2010, 29(6)
Authors:ZHOU Ning  PENG Ji-shen
Affiliation:ZHOU Ning,PENG Ji-shen (Faculty of Electrical and Control Engineering,Liaoning Engineering Technical University,Huludao 125105,China)
Abstract:In order to improve the measurement precision of pressure sensors in wildcat working,a method of error compensation on sensors using the BP neural networks trained by particle swarm optimization(PSO)is proposed.Using the characteristic of global optimum and fast convergence of the PSO arithmetic to train weights of net can effectively improve the convergence speed and learning capacity of BP neural networks traditional arithmetic.The result shows that this method greatly improves the measurement precision a...
Keywords:particle swarm optimization(PSO)  error compensation  BP(backpropagation)neural networks  pressure sensor  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号