首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructures, ferromagnetic, and ferroelectric properties in polyvinylpyrrolidone-assisted CoFe2O4/Pb(Zr0.53Ti0.47)O3 multiferroic composite thick films
Authors:W Chen  X F Chen  Z H Wang  W Zhu and O K Tan
Affiliation:(1) Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore;(2) School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
Abstract:CoFe2O4/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) multiferroic composite thick films with different CFO mass fractions have been prepared onto Pt/Ti/SiO2/Si substrate by a hybrid sol–gel process and spin coating technique. Polyvinylpyrrolidone (PVP) was employed to be an assistance to the sol–gel solution for enhancing the film thickness and promising a crack-free film surface. After annealing at 650 °C in air for 1 h, phase structure, microstructure, magnetic and ferroelectric properties as well as leakage current of multiferroic thick films were investigated. X-ray diffraction indicated a deeply buried distribution of CFO particles in the PZT matrix. Scanning electronic microscopes showed crack-free surfaces and a decreasing film thickness from 7.2 μm to 6.2 μm with increasing CFO content. Furthermore, the saturated magnetization and remanent magnetization were also hence increased. In addition, mass fraction of CFO in PZT matrix was also estimated from 0.36% to 4.58% according to the relationship between M s and magnetic content. Ferroelectric hysteresis loops revealed saturated polarization (P s) and remanent polarization (P r) were diluted by CFO till its mass fraction rising to 1.8%. After that, polarization was increased with further increasing CFO content. Enhanced leakage was demonstrated to be partially contributed to them. A critical content of 1.8% was hence confirmed, where ferroelectric and magnetic properties can be balanced, indicating a possible stress-transferred magnetoelectric coupling effect in this composite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号