Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds |
| |
Authors: | Alvarinho J. Luis P.C. Pandey |
| |
Affiliation: | National Centre for Antarctic and Ocean Research, Polar Remote Sensing Division, Department of Ocean Development, Headland Sada, Vasco-da-Gama, Goa 403804, India |
| |
Abstract: | Large-scale surface atmospheric convergence and divergence patterns in the Indian Ocean are mapped using high-spatial resolution, merged scatterometer wind vectors during 1991-2000. The convergence zone evolves to north of 15°S as a result of convection promoted by warm (> 28 °C) equatorial sea surface temperature (SST), and it exhibits strong intensity during boreal summer and winter. A divergence zone evolves to the south of 15°S as a result of subdued convection caused by colder SST (< 24 °C) that reduces outgoing long-wave radiation; it exhibits enhanced intensity in the eastern Indian Ocean during boreal winter. The interannual variability shows that the divergence in the eastern Indian Ocean lags its western counterpart by 5-7 months. The convergence in the eastern Indian Ocean is stronger than its western counterpart during boreal summer. Relationship between Southern Oscillation Index and spatially averaged convergence time series indicate that the latter weakened during strong El Niño years 1994 and 1997. Spatially averaged divergence time series show a near-contemporaneous relationship with all-India rainfall, with a temporal lag of 1∼2 months. |
| |
Keywords: | Indian Ocean Atmospheric convergence/divergence Monsoons Rainfall Scatterometer winds SST |
本文献已被 ScienceDirect 等数据库收录! |