首页 | 本学科首页   官方微博 | 高级检索  
     


Eu-doped titania nanofibers: processing, thermal behaviour and luminescent properties
Authors:Bianco Alessandra  Cacciotti Ilaria  Fragalá Maria Elena  Lamastra Francesca Romana  Speghini Adolfo  Piccinelli Fabio  Malandrino Graziella  Gusmano Gualtiero
Affiliation:University of Rome "Tor Vergata", Dipartimento di Scienze e Tecnologie Chimiche, INSTM UdR, Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
Abstract:Undoped and Europium-doped titania nanofibers have been fabricated by electrospinning technique, using a single multielement Titanium/Europium source. In this communication we present the synthesis, structural and spectroscopic characterisation of Eu-doped TiO2 nanofibers starting from polyvinylpyrrolidone, titanium tetraisopropoxide (Ti(OiPr)4) and Eu(hfa)3 x diglyme (Hhfa = 1,1,1,5,5,5-hexafluoroacetyacetone, diglyme = CH3O(CH2CH2O)2CH3). The chosen system allowed to investigate a wide compositional range, i.e., from 3 to 10% mol of Eu3+. Microstructure was studied by means of scanning electron microscopy (SEM), thermal behaviour followed by thermogravimetric and differential thermal analysis (TG-DTA). Phase analysis was performed by means of X-ray diffraction (XRD) and high temperature X-ray diffraction analysis (HT-XRD) up to 1100 degrees C. Luminescence properties were investigated by means of luminescence spectroscopy, using a laser excitation source at 395 nm. All electrospun materials consisted of randomly oriented nanofibers of fairly uniform diameter. The average fiber size was 80-100 nm and 40 nm for, respectively, Eu-doped and undoped TiO2 calcinated at 500 degrees C. The presence of Europium shifted toward higher values either the crystallization temperature of anatase and the anatase to rutile phase transition, the latter being accompanied by the formation of the Eu2Ti2O7 phase. The doped samples showed a strong luminescence of Eu3+ ions. The emission spectra were dominated by the 5D0 --> 7F2 emission, suggesting a notable distortion around the Eu3+ ions. The broadening of the bands pointed to the presence of a relevant inhomogeneous disorder around the Eu3+ sites. The Eu3+ doped TiO2 nanofibers showed a higher emission intensity with respect to the PVP/TiO2 ones.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号