首页 | 本学科首页   官方微博 | 高级检索  
     


Two‐point constitutive equations and integration algorithms for isotropic‐hardening rate‐independent elastoplastic materials in large deformation
Authors:Zhi‐Qiao Wang  Guan‐Suo Dui
Affiliation:Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044, People's Republic of China
Abstract:This paper presents alternative forms of hyperelastic–plastic constitutive equations and their integration algorithms for isotropic‐hardening materials at large strain, which are established in two‐point tensor field, namely between the first Piola–Kirchhoff stress tensor and deformation gradient. The eigenvalue problems for symmetric and non‐symmetric tensors are applied to kinematics of multiplicative plasticity, which imply the transformation relationships of eigenvectors in current, intermediate and initial configurations. Based on the principle of plastic maximum dissipation, the two‐point hyperelastic stress–strain relationships and the evolution equations are achieved, in which it is considered that the plastic spin vanishes for isotropic plasticity. On the computational side, the exponential algorithm is used to integrate the plastic evolution equation. The return‐mapping procedure in principal axes, with respect to logarithmic elastic strain, possesses the same structure as infinitesimal deformation theory. Then, the theory of derivatives of non‐symmetric tensor functions is applied to derive the two‐point closed‐form consistent tangent modulus, which is useful for Newton's iterative solution of boundary value problem. Finally, the numerical simulation illustrates the application of the proposed formulations. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:large‐strain hyperelastic‐plasticity  constitutive equations  integration algorithms  first Piola–  Kirchhoff stress  deformation gradient  consistent tangent modulus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号