首页 | 本学科首页   官方微博 | 高级检索  
     


Shortest path stochastic control for hybrid electric vehicles
Authors:Edward Dean Tate Jr  Jessy W Grizzle  Huei Peng
Affiliation:1. General Motors, m/s 483‐619‐406, 1996 Technology Drive, Box 7083, Troy, MI 48007, U.S.A.;2. University of Michigan, U.S.A.
Abstract:When a hybrid electric vehicle (HEV) is certified for emissions and fuel economy, its power management system must be charge sustaining over the drive cycle, meaning that the battery state of charge (SOC) must be at least as high at the end of the test as it was at the beginning of the test. During the test cycle, the power management system is free to vary the battery SOC so as to minimize a weighted combination of fuel consumption and exhaust emissions. This paper argues that shortest path stochastic dynamic programming (SP‐SDP) offers a more natural formulation of the optimal control problem associated with the design of the power management system because it allows deviations of battery SOC from a desired setpoint to be penalized only at key off. This method is illustrated on a parallel hybrid electric truck model that had previously been analyzed using infinite‐horizon stochastic dynamic programming with discounted future cost. Both formulations of the optimization problem yield a time‐invariant causal state‐feedback controller that can be directly implemented on the vehicle. The advantages of the shortest path formulation include that a single tuning parameter is needed to trade off fuel economy and emissions versus battery SOC deviation, as compared with two parameters in the discounted, infinite‐horizon case, and for the same level of complexity as a discounted future‐cost controller, the shortest‐path controller demonstrates better fuel and emission minimization while also achieving better SOC control when the vehicle is turned off. Linear programming is used to solve both stochastic dynamic programs. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:dynamic programming  hybrid electric vehicles  optimal control  Markov decision processes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号