首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic adaptive FE analysis of thin‐walled structures using 3D solid elements
Authors:C. K. Lee  Q. X. Xu
Affiliation:School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
Abstract:In this study, a new automatic adaptive refinement procedure for thin‐walled structures using 3D solid elements is suggested. This procedure employs a specially designed superconvergent patch recovery (SPR) procedure for stress recovery, the Zienkiewicz and Zhu (Z–Z) error estimator for the a posteriori error estimation, a new refinement strategy for new element size prediction and a special mesh generator for adaptive mesh generation. The proposed procedure is different from other schemes in such a way that the problem domain is separated into two distinct parts: the shell part and the junction part. For stress recovery and error estimation in the shell part, special nodal coordinate systems are used and the stress field is separated into two components. For the refinement strategy, different procedures are employed for the estimation of new element sizes in the shell and the junction parts. Numerical examples are given to validate the effectiveness of the suggested procedure. It is found that by using the suggested refinement procedure, when comparing with uniform refinement, higher convergence rates were achieved and more accurate final solutions were obtained by using fewer degrees of freedoms and less amount of computational time. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:adaptive FE analysis  thin‐walled structures  stress recovery  error estimation  adaptive refinement
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号