Heat transfer and flow pattern in co‐current downward steam condensation in vertical pipes‐I: CFD simulation and experimental measurements |
| |
Authors: | Sachin K. Dahikar Arijit A. Ganguli Mayurkumar S. Gandhi Jyeshtharaj B. Joshi Pallippattu K. Vijayan |
| |
Affiliation: | 1. Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India;2. Homi Bhabha National Institute, Trombay, Mumbai 400 094, India;3. Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India |
| |
Abstract: | The condensation of pure steam flowing inside a vertical tube has been extensively studied during the last nine decades. Considerable amount of experimental and analytical efforts can be found due to the significance of this subject in practice. In the present work (Part I), experimental investigations have been performed over a range of pressure (0.1 < P < 0.35 MPa) and internal tube diameter (Di = 10, 20 and 43 mm). A two‐dimensional computational fluid dynamic (CFD) simulations have been carried out commercial software Fluent 6.2 [Fluent 6.2, “User's Manual to FLUENT 6.2,” Fluent Inc., Lebanon, USA, 2005]. CFD results were used to predict the temperature profiles, pressure drop and the heat transfer coefficient, which was in close agreement with the experimental values. The film characteristics predicted by the CFD simulations have been compared qualitatively with the photographic images. Further, the CFD model developed in Part I extended for the analysis of all the experimental data reported in the published literature. © 2012 Canadian Society for Chemical Engineering |
| |
Keywords: | condensation phase change heat transfer temperature profile HTC computational fluid dynamic (CFD) film characteristic |
|
|