首页 | 本学科首页   官方微博 | 高级检索  
     


A Unique Amino Transfer Mechanism for Constructing the β‐Amino Fatty Acid Starter Unit in the Biosynthesis of the Macrolactam Antibiotic Cremimycin
Authors:Keita Amagai  Ryoma Takaku  Prof Dr Fumitaka Kudo  Prof Dr Tadashi Eguchi
Affiliation:1. Department of Chemistry and Materials Science, Tokyo Institute of Technology, O‐okayama, Meguro‐ku, Tokyo 152‐8551 (Japan);2. Department of Chemistry, Tokyo Institute of Technology, O‐okayama, Meguro‐ku, Tokyo 152‐8551 (Japan)
Abstract:Cremimycin is a 19‐membered macrolactam glycoside antibiotic based on three distinctive substructures: 1) a β‐amino fatty acid starter moiety, 2) a bicyclic macrolactam ring, and 3) a cymarose unit. To elucidate the biosynthetic machineries responsible for these three structures, the cremimycin biosynthetic gene cluster was identified. The cmi gene cluster consists of 33 open reading frames encoding eight polyketide synthases, six deoxysugar biosynthetic enzymes, and a characteristic group of five β‐amino‐acid‐transfer enzymes. Involvement of the gene cluster in cremimycin production was confirmed by a gene knockout experiment. Further, a feeding experiment demonstrated that 3‐aminononanoate is a direct precursor of cremimycin. Two characteristic enzymes of the cremimycin‐type biosynthesis were functionally characterized in vitro. The results showed that a putative thioesterase homologue, CmiS1, catalyzes the Michael addition of glycine to the β‐position of a non‐2‐enoic acid thioester, followed by hydrolysis of the thioester to give N‐carboxymethyl‐3‐aminononanoate. Subsequently, the resultant amino acid was oxidized by a putative FAD‐dependent glycine oxidase homologue, CmiS2, to produce 3‐aminononanoate and glyoxylate. This represents a unique amino transfer mechanism for β‐amino acid biosynthesis.
Keywords:beta‐amino acids  biosynthesis  cremimycin  macrolactams  polyketides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号