Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture |
| |
Authors: | Kejin Huang Lan Shan Qunxiong Zhu Jixin Qian |
| |
Affiliation: | 1. School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029, PR China;2. School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027, PR China |
| |
Abstract: | Despite the fact that a stand-alone ideal heat-integrated distillation column (ideal HIDiC) can be thermodynamically efficient and operationally stable, the application of an ideal HIDiC system to separate a close-boiling multi-component mixture is still a challenging problem because of the possibility of strong interactions within/between the ideal HIDiCs involved. In this work, employment of two ideal HIDiCs to separate a close-boiling ternary mixture is studied in terms of static and dynamic performance. It is found that the ideal HIDiC system can be a competitive alternative with a substantial energy saving and comparable dynamic performance in comparison with its conventional counterpart. The direct sequence appears to be superior to the indirect sequence due to the relatively small vapor flow rates to the compressors. Controlling the bottom composition of the first ideal HIDiC with the pressure elevation from the stripping section to the rectifying section helps to suppress the disturbances from the feed to the second ideal HIDiC. Special caution should, however, be taken when the latent heat of the distillates is to be recovered within/between the ideal HIDiCs involved, because a positive feedback mechanism may be formed and give rise to additional difficulties in process operation. |
| |
Keywords: | Distillation Ideal HIDiC system Heat integration Process design Process operation |
本文献已被 ScienceDirect 等数据库收录! |
|