首页 | 本学科首页   官方微博 | 高级检索  
     


Stresses controllable analysis and optimal design of unique high pressure vessel applied in hydrogen charge station
Authors:Zheng Chuanxiang  Lei Shaohui
Affiliation:Chemical Process Machinery Institute, Zhejiang University, Hangzhou 310027, China
Abstract:High pressure hydrogen storage vessels are the key equipment in hydrogen charge stations. Hydrogen environment embrittlement (HEE) is always the associated problem that is inescapable and difficult to be solved completely. In order to decrease the harmfulness of HEE, a unique flat steel ribbon wound pressure vessel (FSRWPV) is designed, whose inner shell material is austenitic stainless steels 0Cr18Ni9 (304) and the steel ribbon material is 16MnR (SA516Gr70). The residual stresses in FSRWPV are analyzed and a stress controlling model is put forward. Through this model, the stress distribution in the FSRWPV wall can be controlled by adjusting the pretension in flat steel ribbons. After optimal designing, the stresses in flat steel ribbon layers are uniform, and that in the inner shell is low or negative. This kind of stress distribution can effectively prevent HEE and stress corrosion cracking (SCC), therefore the FSRWPV has good properties of bearing HEE and SCC. Furthermore, as flat steel ribbon layers are a discrete structure, the online monitoring of FSRWPVs can be conveniently realized, so they have performance of “leak only no bursting”. At the end, an applied example of high pressure hydrogen FSRWPV is given.
Keywords:Hydrogen charge station  High pressure  Vessel  Flat steel ribbon  Hydrogen environment embrittlement (HEE)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号