首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD和小波包的轴承故障特征提取
引用本文:张 毅. 基于EMD和小波包的轴承故障特征提取[J]. 太赫兹科学与电子信息学报, 2012, 10(3): 330-333
作者姓名:张 毅
作者单位:长治学院电子信息与物理系,山西长治,046011
摘    要:提出了一种将经验模态分解(EMD)和小波包(Wp)分解相结合的方法,提取某些电机信号非平稳特征.首先对电机振动信号作EMD分解,再对其分解结果单模态函数作WP包络谱分析,从而得到精确度较高的轴承内圈故障频率.最后,通过仿真和实例,将本方法和已有文献中的方法进行对比,结果表明,该方法不仅具有较高的可行性,而且可以准确地提取出故障信息.

关 键 词:经验模态分解  小波包变换  故障提取
收稿时间:2011-06-22
修稿时间:2011-08-08

Extracting bearing fault based on EMD and Wavelet Packet
ZHANG Yi. Extracting bearing fault based on EMD and Wavelet Packet[J]. Journal of Terahertz Science and Electronic Information Technology, 2012, 10(3): 330-333
Authors:ZHANG Yi
Affiliation:ZHANG Yi(Electronic Information and Physics Department,Changzhi University,Changzhi Shanxi 046011,China)
Abstract:A method is proposed to extract non-stationary parameters of some motors by combining Empirical Mode Decomposition(EMD) and Wavelet Packet(WP) transform.First,EMD is performed on motor non-stationary signal,then the decomposed results,named intrinsic mode functions,are applied with WP envelope spectrum analysis to obtain the fault frequency with higher accuracy.The method is compared with other methods by simulation and example test,and it is proved that the proposed method not only features higher feasibility,but also can extract fault information more accurately.
Keywords:Empirical Mode Decomposition  Wavelet Packet transform  fault extraction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号