首页 | 本学科首页   官方微博 | 高级检索  
     

GLBest-PSO算法在热工过程模型参数辨识中的应用
引用本文:郝超,徐志成. GLBest-PSO算法在热工过程模型参数辨识中的应用[J]. 电工电能新技术, 2012, 31(2): 79-82,87. DOI: 10.3969/j.issn.1003-3076.2012.02.018
作者姓名:郝超  徐志成
作者单位:1.常州机电职业技术学院,江苏常州,213164;2.常州机电职业技术学院,江苏常州,213164
摘    要:过程对象的数学模型,对热工控制系统的设计和分析有着重要的意义.为了达到精确建模的目的,提出了一种基于全局-局部参数最优的粒子群优化算法的辨识方法.将过程模型的每个参数作为群体的一个粒子,利用粒子在空间进行高效并行的搜索来获得最佳参数值,提高了辨识精度和效率.对典型热工过程进行辨识表明:该方法对过程模型的阶次不敏感,对不同输入信号均能得到满意的辨识精度和效率,模型输出与实际输出基本一致,辨识效果较好.

关 键 词:热工过程  粒子群优化  全局-局部最优

Application of GLBest-PSO algorithm for parameters identification of thermal process model
HAO Chao , XU Zhi-cheng. Application of GLBest-PSO algorithm for parameters identification of thermal process model[J]. Advanced Technology of Electrical Engineering and Energy, 2012, 31(2): 79-82,87. DOI: 10.3969/j.issn.1003-3076.2012.02.018
Authors:HAO Chao    XU Zhi-cheng
Affiliation:(Changzhou Institute of Mechatronic Technology,Changzhou 213164,China)
Abstract:The mathematical model of process object is of significance to the design and analysis of the thermal control system.For the purpose of achieving accurate model,an identification method based on particle swarm optimization algorithm combining the global-local best parameter is proposed.By taking every parameter of process model as a particle of the swarm and applying particles to search optimal parameters of process model concurrently and efficiently in the parameter space,the precision and efficiency of parameter identification are improved.The identification results for the typical thermal process show that the method is not sensitive to the order of the model,and can obtain satisfactory identification precision and efficiency for different input signal.The model outputs coincide with actual outputs.The identification method achieves good result.
Keywords:thermal process  particle swarm optimization  global-local best
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号