Cooperative mechanisms between leg joints of Carausius morosus I. Nonspiking interneurons that contribute to interjoint coordination |
| |
Authors: | DE Brunn |
| |
Affiliation: | Fakult?t für Biologie, Abteilung 4, Universit?t Bielefeld, 33501 Bielefeld, Germany. |
| |
Abstract: | Three nonspiking interneurons are described in this paper that influence the activity of the motor neurons of three muscles of the proximal leg joints of the stick insect. Interneurons were recorded and stained intracellularly by glass microelectrodes; motor neurons were recorded extracellularly with oil-hook electrodes. The motor neurons innervate the two subcoxal muscles, the protractor and retractor coxae, and the thoracic part of the depressor trochanteris muscle. The latter spans the subcoxal joint before inserting the trochanter, thus coupling the two proximal joints mechanically. The three interneurons are briefly described here. First, interneuron NS 1 was known to become more excited during the swing phase of the rear and the stance phase of the middle leg. When depolarized it excited several motor neurons of the retractor coxae. This investigation revealed that it inhibits the activity of protractor and thoracic depressor motor neurons when depolarized as well. In a pilocarpine-activated animal, the membrane potential showed oscillations in phase with the activity of protractor motor neurons, suggesting that NS 1 might contribute to the transition from swing to stance movement. Second, interneuron NS 2 inhibits motor neurons of protractor and thoracic depressor when depolarized. In both a quiescent and a pilocarpine-activated animal, hyperpolarizing stimuli excite motor neurons of both muscles via disinhibition. In one active animal the disinhibiting stimuli were sufficient to generate swing-like movements of the leg. In pilocarpine-activated preparations the membrane potential oscillated in correlation with the motor neuronal activity of the protractor coxae and thoracic depressor muscle. Hyperpolarizing stimuli induced or reinforced the protractor and thoracic depressor bursts and inhibited the activity of the motor neurons of the retractor coxae muscle, the antagonistic muscle of the protractor. Therefore interneuron NS 2 can be regarded as an important premotor interneuron for the switching from stance to swing and from swing to stance. Finally, interneuron NS 3 inhibits the spontaneously active motor neurons of both motor neuron pools in the quiescent animal. During pilocarpine-induced protractor bursts, depolarizing stimuli applied to the interneuron excited several protractor motor neurons with large action potentials and one motor neuron of the thoracic depressor. No oscillations of the membrane potentials were observed. Therefore this interneuron might contribute to the generation of rapid leg movements. The results demonstrated that the two proximal joints are coupled not only mechanically but also neurally and that the thoracic part of the depressor appears to function as a part of the swing-generating system. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|