首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian belief network based broadcast sports video indexing
Authors:Maheshkumar H. Kolekar
Affiliation:(1) Department of Electrical Engineering, Indian Institute of Technology, Patna, India
Abstract:This paper presents a probabilistic Bayesian belief network (BBN) method for automatic indexing of excitement clips of sports video sequences. The excitement clips from sports video sequences are extracted using audio features. The excitement clips are comprised of multiple subclips corresponding to the events such as replay, field-view, close-ups of players, close-ups of referees/umpires, spectators, players’ gathering. The events are detected and classified using a hierarchical classification scheme. The BBN based on observed events is used to assign semantic concept-labels to the excitement clips, such as goals, saves, and card in soccer video, wicket and hit in cricket video sequences. The BBN based indexing results are compared with our previously proposed event-association based approach and found BBN is better than the event-association based approach. The proposed scheme provides a generalizable method for linking low-level video features with high-level semantic concepts. The generic nature of the proposed approach in the sports domain is validated by demonstrating successful indexing of soccer and cricket video excitement clips. The proposed scheme offers a general approach to the automatic tagging of large scale multimedia content with rich semantics. The collection of labeled excitement clips provide a video summary for highlight browsing, video skimming, indexing and retrieval.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号