首页 | 本学科首页   官方微博 | 高级检索  
     

矩阵右半张量积的Schur补的奇异值估计
引用本文:王慧敏,赵建立,于金倩. 矩阵右半张量积的Schur补的奇异值估计[J]. 淮海工学院学报, 2009, 18(3): 1-4
作者姓名:王慧敏  赵建立  于金倩
作者单位:聊城大学数学科学学院,山东聊城,252059 
基金项目:国家自然科学基金资助项目 
摘    要:对矩阵AB的奇异值,特别是最小奇异值的下界估计,是矩阵分析中的重要课题.其有很重要的理论和实际应用价值.主要研究了矩阵右半张量积特征值与(Schur补的)奇异值上(下)界估计,给出了一些Hermite矩阵右半张量积的特征值与奇异值的不等式,并且利用分块矩阵的变换技巧,得到了复杂矩阵右半张量积的Schur补的奇异值估计,改进和推广了一些现有不等式,同时进一步丰富了半张量积的理论知识.

关 键 词:矩阵右半张量积  Hermite矩阵  特征值  奇异值  Schur补

Estimates for Singular Values of Schur Complements of the Right Semitensor Product of Complex Matrices
WANG Hui-min,ZHAO Jian-li,YU Jin-qian. Estimates for Singular Values of Schur Complements of the Right Semitensor Product of Complex Matrices[J]. Journal of Huaihai Institute of Technology:Natural Sciences Edition, 2009, 18(3): 1-4
Authors:WANG Hui-min  ZHAO Jian-li  YU Jin-qian
Affiliation:School of Mathematics Science;Liaocheng University;Liaocheng 252059;China
Abstract:Singular value of the product of matrix AB,in particular the lower bound of the smallest singular value estimate,is an important issue in matrix analysis with important theoretical and practical application value.Some upper(lower) bound estimates for eigenvalues and singular values of Schur complements of right semitensor product of matrix are studied in this paper,some inequalities for eigenvalues and singular values of right semitensor product of Hermite matrix are given,and the singular values of Schur c...
Keywords:right semitensor product of matrices  Hermite matrix  eigenvalues  singular value  Schur complement  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号